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Polarization structure of quantum light fields: a new insight. 
1: general outlook 

V P Karassiov 
Lebedev Physical Insfitute, Leninsky prospect 53, Moscow 117924, Russia 

Received 9 September 1992 

Abstract. A new consequent description of the polarization structure of light within the 
framework of quantum optics is given by using the polarization gauge SU(2) invariance of 
free electromagnetic fields and a related concept of the polarization (P) spin. Within this 
approach the quantum light may be thought as a mixture of the usual polarized photons 
and unpolarized biphotons. New classes of unpolarized light states generated by P-scalar 
biphotons are examined. Possible applications are briefly discussed. 

1. Introduction 

For the last several decades polarization properties of light were widely investigated in 
both theoretical and applied aspects (see [l-131 and references therein). Specifically, 
some fundamental problems of quantum mechanics, related to 'hidden' variables, 
Bell's inequalities and Einstein-Podolsky-Rosen (EPR) paradox, quantum chaos, 
Berry and other topological phases, etc, are intensively examined with the help of 
quantum polarization optics (see [ l ,  4,5] and references therein). However, as a rule, 
the polarization structure of light has been described in terms of the field correlation 
functions and associated Stokes parameters which are well adapted to classical optics 
experiments [3] but are not quite adequate to specific quantum ones (photon 
counting) [Z]. Such a description also ignores a polarization SU(2) symmetry [14-17] 
of light fields though it has been widely used implicitly-through the Stokes para- 
meters s. which determine, in particular, the polarization degree 

degP= [$ +s: +s3]'"/s0 (1.1) 
of monochromatic plane wave light beams [Z, 3,6,18]. Furthermore, the physical 
meaning of the Stokes parameters and their connections with the spin properties of 
light fields are sufficiently studied only for plane wave light beams [2-5) although in 
[6] some generalized Stokes parameters were introduced for examining light beams 
with arbitrary wavefronts within classical statistical optics. 

But recently in a series of papers [15-17] a new formalism was proposed for a 
description of polarization structure of multimode quantum light fields using the 
polarization SU(2) symmetry and a related concept of the P-quasispin which general- 
izes the Stokes vector notion at the quantum level and is intimately related to the 
Stokes operators defined in [MI. This approach allows us to gain a new insight into the 
polarization structure of light and quantum mechanisms of its depolarization. 
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The aim of this paper is to give a consistent description of the polarization 
structure of quantum light beams with arbitrary wavefronts using the above men- 
tioned formalism of P-(quasi) spin. Specifically, we will show that quantum light 
beams may be thought as a mixture of familiar polarized photons arid specific 
unpolarized biphoton clusters. New states of unpolarized light, revealed within this 
approach [15-171, are examined. In addition we discuss briefly some applications of 
the results obtained. 

2. Preliminaries: polarization SU(2) invariance and P-spin of electromagnetic fields 

Let us consider the free transverse electromagnetic field with 'm' spatiotemporal 
modes (as it is adopted in quantum optics) which is described by the vector potential 

A(r ,  I) = c  2 (2xh/wjV)"z{A(+)(ji exp[i(kpo,i)] +A'-'(j] exp[-i(kjr- wit)]} 
m 

j=  I 

and the Hilbert space of quantum states Lphp=Span{l{ni}>} spanned by the Fock 
basis vectors 

aA(i?lo)=o (2.2) 
i = 1  .I=* 

which are generated by creation operators a:@) of 'physical' photons with transverse 
polarizations (helicities d = + , -)  only (the gauge condition for the transverse 
radiation field fixing an absence of non-physical temporal and longitudinal photons); 
from hereon e("(]] are the polarization unit vectors adapted to the helicity basis, 
e")(l]=ckj/wi, V is a quantization volume. (We do not use in this paper a more 
general relativistically invariant formulation admitting also consideration of non- 
physical photons since such generalizations do not touch the main points of the 
following analysis (16, 171.) 

The starting point of our analysis is the obvious invariance of standard expressions 

(2.36) 

for the Hamiltonian H and the momentum P of the field under the transformations 
( 15-17] 

0: (11- a2 (J? = wm a=+, - o&?-z&(j) = @2(9)+ (2.4) 
8-+ 

from the group U(2) = {U = Ilu411}. We note that equations (2.3) admit, in fact, the 
more vast group U(3) aU(2) of polarization transformations, but in quantum optics it 
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reduces to the above U(2)  group due to the requirement of conservation of the 
structure (2.2) of the space L,,,,= L, on which quantum expectations of physical 
quantities are calculated 121. 

The transformations (2.4) correspond to the U(2) ‘rotations’ of the polarization 
unit vector e“’(i) [14] in a ‘polarization spinor space’ [ E ,  U] 

and, therefore, may be interpreted as specific polarization gauge transformations. The 
generators of the obtained polarization invariance group U(2)  are of the form 

... 
p 0 = C  P o ( j ) = ( 1 / 2 ) x  [N+( j ) -N-( j ) I  (2.6) 

j=l ,=1 

where N is the total number operator of physical photons and operators P, are 
generators of the SU(2) subgroup defining the polarization ( P )  spin [15-11. The 
operators P, and N satisfy commutation relations 

[N,P.1=0 [Po, p* I = lk p ,  [P+, P-  ] = 2P0 (2.7) 
and in the case m = 1 coincide up to the factor ?i. with the Stokes operators E,, 
introduced in [ l S ]  in the case of one spatiotemporal mode. 

We note that operators P,, do not commute with components S. of the gauge 
non-invariant (and hence locally non-observable [IS]) familiar spin S = (Sl, S,, S,) of 
the electromagnetic field which defines the field transformations with respect to the 
SO(3) group of rotations in the usual 3-space. Indeed, the components S, are 
expressed in terms of the A(r, t) Fourier components as follows 

where 1, Ai*)(j) is the projection ofA‘*)(]? 
on the ath axis of a fixed spatial frame [17-181. Then, from (2.1), (2.6), (2:s) one gets 

is the fully antisymmetric tensor, 

(2 .9~)  
m 

[P=, sal = {2e!Xl(i)a:Li)aT(i) + e L * ) ( i ? [ a X ~ j )  -al(j)a*(j)I} (2.9b) 
,= 1 

where e!”(]) is the projection (directing cosine) of e“(j) on the ath axis. In the case of 
plane wave beams, when all =do?, U =  1,2,3, e$’)(]] =0,  from (2.9) one finds 
equations 

defining transformations of P-spin components under rotations around the light beam 
axis. 

exp(i&)P, exp(-ip&) = exp(iap) Pa a=O, +, - (2.10) 
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3. Polarization quantum optics. Unpolarized quantum light 

Equations (2.6) imply a physical meaning of different components Po as certain 
quantities measurable in photon counting experiments (with broad-band detectors). 
In particular, the total helicity 2P0 of the field is the difference ( N -  - N - )  of the right 
and left-handed photon numbers and Hermitian operators 2P1 = (P, + P - )  and 
2P2=i(P+ - P-) determine (cf [3]) differences (N, -N, )  and ( N x -  N,)  of photon 
numbers with two pairs of orthogonal linear polarizations which are connected with 
the helicity basis by the unitary transformations 

(3 .1~)  

(3. lb) 
which are implemented with the help of phase plates and (for (3.lb)) the rotation by 
angle q~ = d 4  [3,12]. 

Besides, in the case of the monochromatic plane waves quantum expectations (P , )  
are proportional to the Stokes parameterss,: s, =2(Pz), s, = -Z(P,), s, = -Z(P,) which 
are expectation valuesof the appropriate Stokes operators Z.,[18]. Therefore, one can 
consider that in general cases (P,) ,  ( N )  determine the polarization degree deg P of 
quantum light beams with arbitrary frequencies and wave vectors by the relation 

U: ( I )=  {a?()) - u : ( ] ) } / f i  

&:(I) ={U: ( j )  + a : ( j ) ] / f i  

U,'(]) = i{u!(j) + a : ( j ) } / f i  

$(I) = { - U : ( ] )  + a,' ( j ) ) / f i  

degP=2[((PdZ+ ((W2+ ((J'o))~I~(N) (3.2) 
which is similar to (1.1). 

1/2(P+P-  + P _ P + )  +(Po)' are connected by the relation 
The quantum averages (IP21}=p(p+ 1) of the SU(2),, Casimir operator P'= 

p ( p +  1)-[(N)degP/2]Z=u,+ub, +um (3.3) 
with the variances u,=(IP:I)- ((IP.I))* determining polarization noises [Z, 171 and a 
radial uncertainty measure for the SU(2) operators [19]. Further, calculating the 
eigenvalue p ( p  + 1) of the operator P2 on the subspace of one-photon states we find 
p ( p +  1) =+, i.e. the physical photon should be ascribed the value p = + ,  as against 
S = l  for the ordinary spin as follows from (2.8), (2.9): 

(F I s2 I lu) = @I (s: + s: + S: 1 !lu) 

=(VI 42 ( k J ' k , ) ' w J ~ , P , ( I ? P O ( ' ) + N  lq)? IV)ELP (3.4) [ j:, ,:i 1 
(We note that (3.4) is valid only for states describing physical photons.) 

This fact allows us to identify P-spin of one-photon states with the so-called 
effective spin [4,11,20] clarifying simultaneously a physical meaning of the latter one 
as a specific 'radial' measure (cf (3.3)) of polarization properties of light beams with 
arbitrary wavefronts. At the same time the ordinary spin S has no such direct 
connections with proper polarization properties of light related to counting photons 
with definite polarizations (because of (2.9)) though it is an adequate tool for 
describing 'rotation' properties of appropriate experiments [lZ]. Specifically, from 
(2.1) and (2.8) one ezsily finds relations 

(3.54 

(3.56) 
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which together with (2.9) and (2.10) specify angle dependences of the measurement 
results on mutual spatial arrangements of light beams and different measurement 
devices (polarization analysers, detectors, etc.). Morerover, the SO(3) group formal- 
ism related to the ordinary spin allows us to expand familiar correlation tensors 

G ~ ~ ~ P ) j ~ ~ , , . . . i ” ( { r ~ ,  to; r9. t8H=(E!F)(rdl) . . . E$,-’(r9? ts)E!+)(rl, t d  . . .E&., 

E =  -C&Aiar 

in sums of the SO(3) irreducible tensors (expectation values of multipole or related to 
them polarization operators) which possess well-defined transformation properties 
with respect to the spatial SO(3) group. For example, similar expansions were given 
by Roman in [6] for GF”(. . .)in order to define some generalized Stokesparameters. 
We also note that expectation values of the P-spin components can be determined via 
the Fourier transformation of G$’,’)(. . .) as it follows from (2.1) and (2.6). 

Therefore one may use P-spin vector ( P a )  as an adequate tool for studying proper 
polarization properties of quantum light fields in parallel to the usual apparatus of the 
correlation functions which give an adequate spatiotemporal description of all proper- 
ties of light beams [Z], But unlike the latter, use of the P-spin formalism allows us to 
gain a deeper insight into the inner nature of the polarization structure of light beams 
with arbitrary wavefronts. 

Indeed, as was shown in [17], one can decompose the Fock space LF spanned by 
the vectors (2.2) into the direct sum 

of infinite-dimensional subspaces L(px)  which are specified by eigenvaluesp, JZ of the 
Fspin and Po respectively and spanned by basis vectors )pn; n,  A) of the form 

where the summation in ( 3 . 7 ~ )  is constrained by the conditions 

and either all a:=O (for n<O) or all a;=O (for n>O). The coefficients C(. . .) in 
(3.7) are determined from the defining equations 

P21pn;n ,~)=p(p+I ) lpn;n ,R)  P h n ; n , 1 ) = n l p n ; n , A )  
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and some other equations for fixing an extra complex label 1 [17]. 
Operators 

Y$ = 1/2[u;(i)ul(j) + al(i)a:(j)] (3.94 
and 

X; = [ a : ( i ) a l ( ~ ~ - a l ( i ) a : ( j ) ]  (3.96) 

[P,,Y,:]=O [Pa, X i  ] =o a=O, +, - (orO,1,2) (3.10) 
and may be interpreted as creation operators of P,-scalar and P-scalar biphoton 
kinematic clusters respectively, i.e. two-photon pairs with fixed phase correlations of 
two or four waves. Therefore, in general, the states (3.7) describe light beams 
representing a mixture of both usual photons and P- and Po-scalar biphotons [17]. 
Indeed, these states are generated by the action of (Y$ y@ and (X;)yi, on the vectors 
lo),= Span {(Inlz; 2(z( ,  1)). describing completely polarized states of light and having 
'vacuum' properties: Yijlu)z=O=Xijlu)x with respect to operators Yii= (Y;)+, X,= 
( X ; ) ' .  We, however, note that biphotons Y; exist for any number m of spatiotem- 
poral modes whereas biphotons X;  only for m22.  We also emphasize that in contrast 
to the usual photon operators U:(]], a&? the operators X ; ,  Xil, Y;, Yll satisfy not the 
canonical commutation relations but trilinear commutation relations for quanta of 
parastatistical fields [17]. However, using a generalized Holstein-Primakoff mapping 
[20] one can construct from them some operators W,C, W. obeying canonical commu- 
tation relations [16,17] and representing peculiar two-photon 'optical atoms' (cf [21]). 
For example, the operators 

W+=Y:,[N/2+2+IPol]-l" [Pol =e W = ( W + ) *  (3.11) 
obtained in such a manner satisfy the relations: [W, W']=I ,  W'W=N/2-IPoJ 
( I  stands for the unity operator) describing particle-like two-photon excitations with a 
specific collective binding energy Zolnl on the invariant subspaces L'(z#O)= Span 
{I{n+,n-}):  POl{n*, n-})=nl{n+, n-])}. This construction, in a sense, realizes the 
method of fusion by de Broglie [22]. 

Further, the decomposition (3.6) is invariant with respect to the Lie algebra so* 
(2m) generated by operators X ; ,  Xii[17]. Therefore states lq~) belonging to a subspace 
L ( p z )  with given p .  z a t  an initial time will be in it for the time evolution governed by 
the free Hamiltonian (2.3~) or interaction Hamiltonians Hjnt =&({&!, 
Extending the algebra so* (2m) by adding operators Yf, Y, we get the algebra 
u(m, m) associated with interaction Hamiltonians Hint= HL,({Y$, Yfi; X ; ,  X,i}) which 
remain invariant for time evolution subspaces [17] 

in (3.7~) are solutions of the operator equations 

L'(x= L(px) .  
P*l4 

The simplest examples of such interaction Hamiltonians are given by expressions 

H L = C  ki& +g&) (3.12~) 

H;,=&+W{, H & = C  (fijY$ +flYij) (3.126) 

iCj 

icj 

and describe some specific parametric processes [16,17]. 
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The decomposition (3.6) also implies a new classification of the polarization states 
of quantum light fields from the physical viewpoint [U-171. Specifically, for the states 
I ~ = O ) E L ' ( O )  and IP=O~=O)EL(OO)  from (2.6), (2.8), (3.7)-(3.10) we find (lPJ)= 
0, (IS,[) = 0 for all a that is a characteristic property of unpolarized light (cf [2,3]). 
Besides the calculations [I61 showed that for these states, correlation tensors 
G$!.])(r, t; I, r)  are expanded in a sum of the SO(3) scalar and quadrupole tensors and 
have a form similar to that which describes completely unpolarized light beams (with, 
in general, arbitrary wavefronts) in classical statistical optics [6]. 

But unlike the classical (chaotic) unpolarized light, for the states (p=On=O) and 
lz= 0) we have additional characteristics of light depolarization which follow from 
equations (3.7)-(3.10) and are expressed in terms of higher moments for P,: 
(I( P0)"l) = 0 ( 1  ( Pm )" I) + 0 a =  1,2,n)l  for 1) E L'(0) (3.13~) 
(I(P.)"I)=O a=O, 1,2, n> 1 for 1) E L(O0) (3.13b) 
showing the complete absence of appropriate polarization noises of any order 
measured by noises of difference currents in schemes of photodetectors with polariza- 
tion analysers (cf [9]); herewith, as it follows from (2.10), for axial light beams (with 
parallel wave vectors 4) results of measurements do not depend on rotations of 
analysers around beam axis. 

Thus, for the states / ) E  L(O0) all proper polarization properties are identical with 
those for vacuum state IO), but unlike the latter the light intensity in these states is not 
equal to zero. Consequently, they may be recognized as states describing absolutely 
unpolarized light while the states I)EL'(O) have a hidden polarization structure 
revealed in measurements of linear polarization noises. Moreover, the states 1p = On= 
0) minimize both the aforementioned 'radia!' and other uncertainty relations for the 
4 2 )  operators as well as form the infinite-dimensional space of quantum states on 
which three non-commuting operators Po behave then as c-numbers. However, we 
have no analogous relations (of the (3.13) type) for components So of the ordinary 
spin as follows from (3.4), (3.9, (3.9). 

Therefore, states lp) E L'(0) generated by biphotons Y$ , X$ and I@) E L(00) c 
L'(0) generated only by biphotons X $  describe new types of unpolarized light due to 
strong quantum phase correlations rather than random mixing light beams as is the 
case for classical unpolarized light [2,3]. Examples of such states are yielded by 
generalized coherent states related to interaction Hamiltonians (2.12). Specifically, 
generalized coherent states of the S0*(2m) group orbit type 

(3.14) 

are generated by H:", (see, e.g., [16,17] where they are discussed together with some 
related models) whereas ws produces the Sp(2m, R) generalized coherent states 

ly,j) ,=ew[z (Y,Y~-~:Y,)]Io) (3.15) 

coinciding in the cage m = l with two-mode squeezed vacuum states [U] and describ- 
ing, in particular, so-called twin-photon beams [9]. 

All other subspace L(pn) ,  L ' (z) ,  1~120, describe states of partially polarized 
quantum light (see [17] where we also examined various types of polarization 
generalized coherent state of light including those which are eigenfunctions of the 
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operators Po, P2, Xij ,  Y ,  and generalize the Aganval's pair coherent states 1241). We 
also note that acting by the group displacement operators from (3.14), (3.15) on usual 
multimode Glauber coherent states ]a?, a;), a:#O, we get, in the general case, 
states of partially polarized light which contains (for special values of parameters a') 
a subclass of states corresponding to unpolarized light. Specifically, all states related in 
such a manner to la' ,a-)  display properties of usual unpolarized light when 
la+/ = la-1 (cf [7]). But relations of the (3.13) type are not available for them. 

Thus, our analysis displays inner mechanisms of the light depolarization at the 
quantum level (cf [25] where a conjecture was uttered about the quantum nature of 
unpolarized light)) by contrast with the generally accepted viewpoint [3] that random- 
ization is the only way of obtaining unpolarized light. Besides, as follows from (3.7), 
( 3 . Q  the P-spin formalism yields some natural measurable characteristics of light 
depolarization, namely, degrees dep P= (1 -2p/N) and dep Po= (1 - 1%1/?$ of the 
content of P-scalar and of P,-scalar bihpotons where p,  5, stand for expectation 
values of appropriate operators; herewith p is determined from (3.3). Evidently, 
dep Pu is connected with the well known degree of circular polarization l ( N + ) -  
(N-)I/(N) whereas dep P provides a new quantitative characteristic of polarization 
structure of light related to measurements of noises. 

We also note that analysis above can be extended by considering a modification of 
the decomposition (3.6) where instead of Po any operator Pa, a =  1,2, corresponding 
to a linear polarization basis is diagonalized. Such an extension leads to new states of 
quantum unpolarized light generated by P,-or P,-scalar biphotons of the (3.9~) 
type and having characteristics similar to those described by (3.13~) but with some 
peculiarities concerning their 'rotation' properties determined by (2.9), (2.10) and 
(3.2). Specifically, the analogues of (3.13~~) are valid only for the situation when 
analyser axes coincide with those determining appropriate linear polarizations. A 
more detailed analysis of this question and related topics will be given elsewhere. 

4. Applications and conclusion 

The P-spin formalism and non-classical states of light described above have several 
potential applications; one, for example, is in optical communication theory [26-281. 
Specifically, the properties (3.10) of states I~)EL(OO) and I ~ ) E L ' ( O )  and the 
decomposition (3.6) appear to be promising for designing the quantum channels of 
communication systems [26]. Such communiction channels are realized by light beams 
using both amplitude and phase modulations for encoding information [26, 271. But 
polarization methods for its encoding appear to be more preferable because of certain 
(mainly energetics) reasons. We sketch a scheme using quantum unpolarized light 
within such an approach, following [U]. 

For discrete channels their efficiency is usually estimated with the aid of the 
conditional error probability P,[nz#rit] where m is an input message and m is the 
appropriate output one [26 ] .  Then, using, states I t y , ) ~  L'(0) for transmitting the 
logical 0 and states Itp,)~L'(xfO) for transmitting the logical 1 in binary discrete 
channels, one can use the results obtained above for optimizing P,[. . .] (cf [26]). For 
this end it is also of interest to estimate the information capacity [28] of the states 
I+)eL'(O) as compared with that of other quantum states. This scheme may find an 
implementation, for example, in biocomputing design [17,27]. 
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For other lines of possible applications of the results we point out precise 
measursents of polarization (chiral) properties of anisotropic media and studies of the 
interaction of different kinds of quantum unpolarized light with optically active 
biological macromolecules (13 [29]). We also note that the above formal constructions 
(especially, the decomposition (3.6) and the mapping (3.11)) may be used in other 
physical theories with internal SU(2) symmetries. 

In conclusion we emphasize that the above results give a deeper insight into the 
polarization structure of light allowing determination of new unusual polarization 
states in quantum optics, in particular, twin-photon states with hidden polarization 
structure and absolutely unpolarized states of P-scalar light. In a sense, the above 
results yield necessary prerequisites for developing a quantum description of unpolar- 
ized light waves (cf [30]) whose existence has not yet an adequate solution within 
classical optics [3,30]. Besides, we established some interrelations between proper 
polarization (P-spin) and rotation (spin) characteristics of light fields (equations (2.9), 
(2.10)) that allows us to examine the behaviour of polarization characteristics and 
dependence on rotation of measurement devices with respect to light beam directions 
(axes). 

All this opens some possibilities in setting new optical experiments related, in 
particular, to ‘hidden’ variables and EPR paradox [1,4, lo], polarization chaos, 
spontaneous symmetry breaking and bistability [7,13,25], ‘optical atoms’ and polariz- 
ation solitons [8,20], reduction of quantum noises [9,11,23], etc. We are planning to 
discuss these topics as well as some practical schemes and mechanisms of production 
of quantum unpolarized light (specifically, due to the obvious fact that states (3.14), 
(3.15) are decomposed into products of those describing beams of two-mode squeezed 
light obtained in simple schemes of parametric scattering (cf [9,11,23])) and its 
standard squeezing properties (in terms of the field quadrature components) and 
interactions with material media in forthcoming papers (see also [15-17,31,32]). 

The author thanks V P Bykov, D N Klyshko and A V Masalov for stimulating 
discussions and G S Agarwal, V L Derbov and S I Vinitsky for interest in this work. 
The work was supported in part by the Ministry of Science, High School and 
Technical Policy of Russia, Grant Numbers 07-14 and 107-51-74. 
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